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Multiple time scale arguments'are used to show that near a Hopf bifurca- 
tion to a chemical oscillation the dynamics of the system reduces to that 
of a classic soluble limit cycle system. A birth and death master equation is 
then introduced and the spectrum of the resulting transition operator is 
shown to be complex. Exact solutions of the master equation are obtained 
both for the steady and (for a rather general class of systems) "excited" 
states. Thus a simple basis of universality of critical properties in chemical 
oscillations is provided. 
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1. I N T R O D U C T I O N  

Limit  cycle Oscillations have been found  in chemical ly  react ing systems (1~ 
as well as in electrical  circuits,  (2~ lasers,  (3~ and  insect flight. (~ As these systems 
are  dr iven sufficiently far  f rom equi l ibr ium,  osci l la t ion may  ei ther  set in as 
a no rma l  (i.e., no t  inverted) H o p f  bifurcation(5,6~--i.e.,  as a smoo th  (second- 

order )  t rans i t ion  where the ampl i tude  o f  osci l la t ion increases cont inuous ly  
f rom zero as one passes beyond  the b i furca t ion  point .  Al ternat ively ,  oscilla- 
t ions may  set in as a f i rs t -order  t ransi t ion,  (v~ where a system passes f rom a 
s teady state to one with a homocl in ic  orb i t  to a l a rge-ampl i tude  osci l lat ion 
as a pa r ame te r  passes th rough  the t rans i t ion  point .  Al te rna t ive ly  a pa i r  o f  
cycles, one stable and one unstable ,  m a y  emerge f rom a neutra l ly  stable 
cycle tha t  arises at  a b i furca t ion  po in t  at  finite ampl i tude  f rom a stable 
s teady state. The ana logy  o f  t rans i t ions  between nonequi l ib r ium states and  
tha t  o f  equi l ibr ium phase  t ransi t ions  has been discussed elsewhere/8~ 
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In this paper we consider the case of a normal Hopf  bifurcation to a 
limit cycle. In this case the system has a nonequilibrium critical point at the 
onset of oscillation. It is known that such nonequilibrium critical points 
have a close analogy to equilibrium phase transition critical behavior. (8~ Of 
particular interest is the presence of critical fluctuations--i.e., long-lived 
fluctuations about average values of the state variables such as concentra- 
tions, temperature, or pressure. 

In Section 2 we use scaling arguments (9-1a~ to show that sufficiently 
close to the critical point the equations of reaction and diffusion for an 
arbitrary reacting system reduce to a time-dependent Ginzburg-Landau 
(TDGL) equation for a complex order parameter, in agreement with earlier 
reductive perturbation methods which were applied to a special case. (9) We 
then generalize an earlier result, (la~ finding that the equation for the complex 
order parameter reduces to a classic soluble model nonlinear oscillator 
equation <14~ studied earlier in the context of the theory of nonlinear chemical 
waves.(~5-~7) 

A master equation is introduced in Section 3 to describe fluctuations in 
the classic oscillator and it is argued that this equation should describe 
critical behavior in general systems at a normal Hopf  bifurcation. It is 
shown that the spectrum of the transition operator is complex, and the 
existence of damped excitations which rotate around the phase plane trajec- 
tory is demonstrated. The universal oscillator master equation is shown in 
Section 4 to yield exact solutions for the steady state and, in a somewhat 
restricted case, for excited states. 

Finally, in Section 5 the expected universality of critical exponents for 
oscillatory systems is used to argue that the present model of fluctuations 
contains all the interesting critical behavior for a normal Hopf  bifurcation 
but that other oscillator-fluctuation-likesystems--i.e., homoclinic, chaotic, 
and unstable cycles--remain as important outstanding problems in the theory 
of fluctuations. Other treatments of fluctuations in limit cycle systems are to 
be found in Refs. 8, 23, and 29-32. 

2. S C A L I N G  A N D  THE U N I V E R S A L  L IMIT  C Y C L E / W A V E  
E Q U A T I O N  

The excitations of a system near a critical point that are known to lead 
to critical behavior are those whose lifetime diverges as we approach the 
critical point. Thus in order to describe critical behavior it is important to 
deduce an equation of motion (EOM) for these excitations. The scaling 
method and the closely related reductive methods ~9-13~ are techniques for 
deriving such EOMs. 
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We start with the reaction diffusion equation for a system of N species, 
i = 1, 2,..., N, with concentrations c(r, t) = {cl, ca,..., CN}; we have 

~e/~t = D V2c + f~c + ~ ( e )  (2.1) 

where we assume that c is measured with respect to a homogeneous steady 
state, D is a matrix of diffusion coefficients, f~ is a matrix of the linearized 
reaction rates, and Jg" is a column vector of nonlinear rate contributions of  
second or higher order in c. I t  is useful to introduce a set of mode coordinates 
M~(r, t) measuring the amplitudes of the eigenvectors of s 

f~[a) = Y~l@ (2.2) 

(and similarly for @l) in terms of the development 

c(r, t) = ~ M~(r, t ) le)  (2.3) 
6r 

Putting this development into (2.1), we obtain 

~M~/Ot = ~ ,  ~@~eV2M~ + 7~M~ + ~ W~BerMBMer (2.4) 
B B,B' 

~eB = @]D[/9) (2.5) 

N 

N~eB'= ~.  ,(,~1N~,,.~1/3),1/3% (2.6) 
g , j , k =  1 

where for simplicity we assume that N(c)  is quadratic, N~(c)= N 
N~,s,kcjc~. 

For  the existence of a H o p f  bifurcation there must be a pair of complex 
roots ~'1,2 - y~ such that 

y• = _+ioJ + 7 (2.7) 

where y passes through zero as a constraint parameter  ;~ passes through a 
critical value 2t~ and the frequency co # 0. The scaling approach proceeds 
by introducing scaled variables according to 

r' = s - ~ r ,  t '  = s - ~ t ,  y' = s~y (2.8) 

and seeking solutions in the form 

M+(r ,  t, r) = s -~W(r ' ,  t ' ,  r ' )e  '~'~" 
M_ = M+* (2.9) 

M~(r, t, y) = s -X~M~(r', t', r'), ~ # +- 

The conjecture one makes in taking the scaling ansatz (2.9) is that there 
exist solutions which can be described as an oscillator with an amplitude and 
phase that vary slowly in space and time through the function W that will be 
found to play the role of a complex order parameter  for the present system. 
The scaling exponents z, u, x, and x~ are determined by ensuring that the 
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class of solutions determined by a given choice yield equations of motion 
yield a class of solutions which are nontrivial as the space scaling factor s 
diverges and hence, since u > 0, y = s -uy, __> 0 as s ~ oo and the system is 
arbitrarily close to the critical point. 

Upon substituting the scaling ansatz into the equation of motion (2.4) 
for the mode coordinates, we find that the long-lived critical excitations we 
seek are solutions of  the equations (dropping the primes) 

OW/Ot = N V 2 W +  y W  + b l W I 2 W  (2.10) 

where we have used the choice 

z = u =  x ~ = 2 x = 2  (2.11) 

for the scaling exponents; also, one must use the fact that terms with factors 
e ~'t', co' = sZw, will, as s --> 0% average out when in an equation of motion 
of a slowly evolving variable. 

The constant coefficients in the T D G L  equation (2.10) are given by 

= ( + I D [ + )  (2.12) 

b = - 2  y. N+ +'~N~+ - /y,~ (2.13) 

Note that in general the order parameter "diffusion coefficient" may be 
complex and furthermore its real part may be negative, indicating a sym- 
metry-breaking instability, as was found for the pattern formation instability 
in the competitive particle growth theory of Liesegang banding327) These 
results are in agreement with those obtained by reductive perturbation 
theory ~4,27~ (although in Ref. 13 it appears that ~@ is assumed real). 

The Soluble  Universal  Cycle 

It has been pointed out (la~ that the T D G L  equation of the form (2.10) 
is closely related to a classic limit cycle system (14~ studied by several authors 
as a soluble model for chemical waves. (~5-~7~ In order to show the relationship 
to and to introduce the classic limit cycle system we define the modulus and 
phase of  W, 

W --- Re i~ (2.14) 

Introducing real quantities 

= ~ + i~2,  b = bl + ib2 (2.15) 

and substituting (2.14) into the T D G L  equation for W, we find 

~R/~t = ~ [ V 2 R  - R[V0[ 21 + ~z[2VR.V0 + RV20] + RB(R)  (2.16) 
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R ~O/gt = ~ l [ 2 7 R .  VO + RV20] + ~2[V2R - Rlv012l + A(R) (2.17) 

A(R)  = b2R 3, B(R)  = 7 + bl Rz (2.18) 

(If we neglect the complex part of ~ ,  ~2 = 0, we obtain the results of Ref. 
13, although -~2 may be nonzero for the more general case.) 

Equations of this form, with ~2 = 0, have been studied as a polar 
transformation of reaction-diffusion equations for the variables X = R cos 0, 
Y = R sin 0. (1~-1v~ In these studies it has been found that plane wave solutions 
can be found in the form of constant-amplitude solutions R = Ro, B(Ro) - 
k2-~1 = 0 with frequency A(Ro) and phase 0 = k . r  + A(Ro)t. Similar 
solutions exist for (2.17) except that for -~2 # 0 there is a diffusion correction 
to the frequency, which is A(Ro) - k2~2, k being the wave vector for the 
wave. It was emphasized in Ref. 17 that for the more general choices of  
B(R)  one could find soluble examples exhibiting multiple wave solutions, 
excitability, and even waves of variable amplitude. Furthermore, in Ref. 13 
the existence of spiral waves in this system was proved and in Ref. 28 the 
model was analyzed via a Pad6 approximant scheme to generate explicit 
periodic and aperiodic center wave solutions. Static structures were also 
studied in Ref. 4, and, furthermore, exactly soluble, multiply periodic 
reaction-diffusion patterns were found on a closely related three-variable 
"po la ra to r "  model. (25~ 

Thus it is quite interesting that near a critical point a general oscil- 
latory system reduces to a very tractable but nontrivial nonlinear problem 
which demonstrates many nonlinear wave, pattern, and chaotic phenomena. 
The success in finding these analytic solutions of the deterministic model 
suggests the possibility that this system may lead to a soluble master 
equation characterizing fluctuations for a general oscillatory system suffi- 
ciently close to the critical point. This is the subject of the next two sections. 

3, F L U C T U A T I O N S  IN THE U N I V E R S A L  MODEL '  

The universal model has been shown to describe the long-lived fluctua- 
tions near the critical point. Let us now set forth a statistical equation based 
on this model. Perhaps the most well-accepted theory of fluctuations in 
nonequilibrium reacting systems is the cell master equation based on the 
birth and death model ~2~ extended to include diffusionJ TM Rather than 
attempt a derivation of such an equation from this starting point, we make 
the assumption here that an adequate model of fluctuations can be constructed 
in terms of the polar coordinates R and 0 discussed above. Since these 
coordinates were found advantageous for finding exact solutions in the case 
of chemical waves and oscillations, ~I5-17~ one might expect that a statistical 
theory based on them would be soluble. 
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3.1. A M a s t e r  Equat ion 

Fluctuations in nonequilibrium reacting systems have, for the most 
part, been described by birth and death master equations in the particle 
number variables. We would like to derive a statistical equation in the R, 0 
variables from a particle number master equation since one might expect 
that, as for the ordinary differential (macroscopic) equations, the problem 
might be separable. It is known from the theory of equilibrium critical 
phenomena that properties such as critical exponents are insensitive to 
the details of the Hamiltonian and hence of the statistical model (since the 
probability distribution depends on the Hamiltonian). Furthermore, the 
particle number birth and death master equation for chemical reactions has 
not been justified from statistical mechanics but is a postulated statistical 
model. Likewise here we postulate a birth and death type formalism in the 
R, 0 variables, recognizing that it may not necessarily be identical to the 
statistical model derived by appropriate transformation from the (yet 
unproven) particle number formalism. As in the latter, the construct shall 
ensure the existence of the correct macroscopic equations in the small- 
fluctuation limit and it is furthermore reasonable to expect that a certain 
universality should exist for, say, critical exponents which will justify the 
use of the model. 

To construct our statistical model we invoke the spirit of  the birth and 
death master equation and further require that the most probable trajectory 
away from any critical behavior should obey the macroscopic equations of 
motion. We start by introducing a polar grid consisting of L rays from the 
origin separated by an angle A0 such that 

L A0 = 2~r (3.1) 

Furthermore, the R coordinate is broken up into steps separated by jumps 
AR. Thus the allowed states of the system are the vertices of the polar grid 
shown in Fig. 1. 

The statistical model consists of a master equation for the probability 
~ (n , j ,  t) for the system to be at 0 = n A0, R = jAR,  where n = 0, 1,..., L 
a n d j  = 1, 2,.... The po in t j  = 0 at the origin has been excluded since in any 
real system the center of a macroscopic limit cycle corresponds to a fraction 
of a particle anyway and hence is not accessible. Because of the polar geometry 
of the grid we note the periodic boundary condition 

~(n  + L ,L  t) = ~(n,.L t) (3.2) 

a constraint which will play the same role in determining the eigenvalues of 
the transition operator that rotational symmetry does for, say, the two- 
dimensional central force problem in quantum mechanics. 
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Fig. 1. Polar grid for "birth and death" master equation (3.2). 
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Using a birth and death type formalism with transition rates obtained 
from the macroscopic equations of motion (2.16) and (2.17) we obtain the 
following master equation: 

a ~ ( n , j ,  O/a t  = 2 j [ ~ ( n  - 1,j, t) 7 ~ (n , j ,  t)] 

+ A~[(j - 1)~(n, j  - 1, t )  - j ~ ( n , j ,  t)] 

+ A2[(j + 1)~(n, j  + 1, t)  - j ~ ( n , j ,  t)] 

+ B j + l ~ ( n , j  + 1, t )  

- /~j~(n, L t), j /> 2 (3.3) 

~ ( n ,  1, t ) /~ t  = A l [ ~ ( n  - 1, 1, t )  - ~(n, 1, t)] 

- al~(n, 1, t) + 2;~2~(n, 2, t) 
+ /~25~(n, 2, t) (3.4) 

)~ = ~ - ~2, At, A2 > 0 (3.5) 

As = A ( j  AR) /AO (3.6) 

Bj = b~ AR2j  2 (3.7) 

One may show that if fluctuations are neglected this stochastic equation 
leads to (the space-independent part of) (2.16) and (2.17) for the evolution 
of the most probable--deterministic--trajectory. Note that to construct a 
more general class of soluble fluctuating oscillator systems we may take B 
to be arbitrary and generate the richness of phenomena found in Refs. 
4 and 17. 



480 M. DelleDonne and P. Ortoleva 

3.2. Eigenfunctions of the Transition Operator 

One of the features of (3.3) that allows for exact solution is that the 
eigenfunctions of the transition operator may be written as a product of 
n- and j-dependent distributions, i.e., there are solutions of (3.3) in the form 

~(n, j, t) = | ~t (3.8) 

To carry out the usual separation of variables scheme we write (3.3) in the 
form 

8~/8t = d ~  + ~/ '~ (3.9) 

where d ( j )  only operates on the 0 index n and ~ only operates on the R 
index j {i.e., d ~ ( n , j ' ,  t) = .di[~(n - 1,j, t] - ~ (n ,Z  t)]} and ~ is defined 
by comparing (3.3) and (3.9). With this we find that for eigenvalues e to be 
determined shortly, @(n) and ~ ( j )  must satisfy the equations 

O(n - 1) - O(n) = CO(n) (3.1o) 

[ ~  + ~ - z ] ~ ( j )  = 0 (3.11) 

Taking the complex conjugate of (3.10), it is seen that for each solution 
(0, ~) there is, for complex ~, a second solution (O*, cr*). Hence the angular 
eigenvalues are distributed symmetrically about the Im cr = 0 axis in the 
complex cr plane. Similarly, for every solution (N, e, z) there is a solution 
(N*, ~*, z*) and hence the eigenvalues and eigenfunctions of the transition 
operator are either real or occur in complex conjugate pairs (since the 
transition operator is real). Let us analyze the two equations separately. 

3.2.1. The Angular  Eigenvalues. The difference equation (3.10) 
is trivial and yields the solution 

O(n) = O(0)/(1 + ~)" (3.12) 

As in quantum mechanics or electromagnetic theory the rotational symmetry 
fixes the eigenvalues; the periodicity condition (3.2) yields (1 + e)z = 1, 
and introducing L roots of unity, 

uq = e 2"~qjz, q = 0, 1 ..... L - 1 (3.13) 
we obtain 

% = uq - 1 (3.14) 

Substituting this value for % into (3.11), we obtain an equation for the 
eigenfunctions ~q(j),  which are seen to be the null vectors of a complex 
transition operator. 

3.2.2. The Case A - "  const .  The most general case where A 
depends on j will not be considered further in this section. In contrast to 
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the general case, the simplest case of  constant A lends itself to easy analysis. 
Furthermore,  the variation of the frequency as a chemical oscillation bi- 
furcates is a nonessential feature of  the problem and should not dramatically 
affect the results except in rather exceptionally strong dependences. In any 
case we can typically vary experimental parameters such that a bifurcation 
occurs but the frequency is essentially constant. 

From (3.11), Gq(j) are seen to be the eigenfunctions of  4//" with eigen- 
value v, 

v = z -- .,~%, ~K'G(j)  = v G ( j )  (3.15) 

From its character we can take ~K" to have a real spectrum bounded from 
above by and including zero. 

It  is instructive to consider the case v = 0, the steady state of  the radial 
distribution G~ (and in fact for the full system--see next section). Thus for 
these eigenfunctions 

zq = ~ q ,  G( j )  = Go(j) (3.16) 

In particular in the " thermodynamic  l imit"  A0 -+ 0, L --~ oo we have for q 
finite 

z~ = .,~% ,,~ A q i -  rrAq2/L (3.17) 

Thus the lowest-lying "exci ta t ion" from the z = v = 0 (steady) state, q = 1, 
is seen to oscillate with the frequency of the deterministic oscillator and to 
damp on a very long time scale, L/rrA.  

Note that the limits L --> oo and t --> oo do not commute. For  a finite 
system, L < 0% the probability always damps out to the steady distribution 
G ~ However, taking L ~ oo first, we see that the probability will oscillate 
indefinitely. 

To see the character of  the q = 1 mode we note that combining the 
q = 1 mode and its complex conjugate q = - 1 ,  we obtain the real-valued 
distribution (L >> 1) 

GO(./') cos(At - 2trolL)  e -nAtlL (3.18) 

which is seen to rotate at the cycle frequency A and to have one maximum 
moving at the position n = LAt /2rr .  As we shall show below, beyond the 
bifurcation point, 2, > 0, G~ has a sharp maximum at j~ax around the 
cycle amplitude predicted by the macroscopic equations, i.e., around 
B(jmax  AR) = A. This behavior explains, on a statistical basis, how a limit 
cycle can carry out its deterministic motion for long times before an ensemble 
of systems reaches the state G~ with the phase of  oscillation distributed, 
uniformly in the present simple model, around the deterministic cycle. 

Finally, for the simple case A = const we see that the eigenvalue spectrum 
of the transition operator is as shown in Fig. 2. Note that for a large system 
(L >> 1) the spectrum (for a given v) is continuous and in the left half-plane. 
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~ m  z 

@ 
Fig. 2. Eigenvalues of the birth and death master equation for the limit cycle system. 

3.2.3. R-Dependent  Frequency. For the case A = A(R) the analysis 
is much more difficult. It is tempting to conjecture that the spectrum again 
lies on arcs in the left half-plane with "low-lying states" having an eigenvalue 
with small negative real part and imaginary part of the order of magnitude 
of the macroscopic cycle frequency. Furthermore, one may show for q # 0 
(by dividing Rj into real and imaginary parts) that there are no nontrivial 
solutions (3.11) for real z. Also, we may, as mentioned above, often set 
experimental conditions so that the frequency function A only depends 
weakly on R. This suggests that we can write A(R) = X + AA(R) and do a 
perturbation theory in AA(R). Clearly in this limit the above conjectures are 
justified. However~ if A depends very strongly on R a more careful analysis 
is needed. 

4. THE CRATER D ISTRIBUTION 

One might expect that the steady-state probability distribution for a 
limit cycle would have the appearance of a ridge or crater with maximum 
describing the orbit of the deterministic cycle. In this section we explicitly 
show this and other properties of the universal cycle master equation by 
obtaining an exact solution for the steady state. 

The Steady-Sta te  Distr ibution 

As shown in the previous section, the angle-dependent states are time 
dependent. The steady-state distribution for this system ~0(j)  is independent 
of the angular index and obeys the equation 

qbs+ 1 -- qbj = 0, j >~ 2 (4.1) 

0 s = --AI(j -- 1)~2'~ -- 1) + [)t2j + ~],~o(j)  (4.2) 
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We shall solve this equat ion for arbi t rary B(R). For  the universal oscillator 
we have specifically 

~u,m, = bl AR2j 3 (4.3) 

Equat ion  (4.1) implies that  d#j is independent  of  j ,  i.e., for  some constant  c 
we have 

q~j = c (4.4) 

,~o(j 

~~ 
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Fig. 3. Steady-state probabil i ty distr ibutions G~  for  universal model  (4.3), (4.6). 
In  terms of  reduced parameters  /~ = 1~,/bl A R  2, a = 1, 2, the cases of  (a) the critical 
state ~1 = ~2 and (b) a stable limit cycle (at t~ = 8192) are shown for  the choice 
if2 = 2048. Fo r  a stable steady state at /xx = 512 the distr ibution (not shown) is very 
nar row,  being centered a round  j = 1 with a width of  0.448. 
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We may show that c = 0 by first noting that from (3.1) the equation for 
~'~ reads 

0 = - ) t ~ ~  + 2,~2~~ + ~2~~ (4.5) 

and evaluating (4.3) and (4.4) for j = 2 we find, on comparison with (4.5), 
that c = 0. Thus (4.4) becomes qbj = 0 and using (4.3), we find upon recurring 

~o( j )  rLr )q(i - 1) 
(4.6) ~o(1 ) = 1 1  ,=2 A-~-/~ B~ 

For  the universal model one may show for A1 >> ~,2 >> 1 that (using Stirling's 
approximation) there is a maximum in ~0( j )  at Jmax = ~,/ARL Hence in the 
thermodynamic limit the cycle bifurcates with the classical value of 1/2 for 
the bifurcation exponent, i.e., the power of the bifurcation parameter ~ = 
~1 - ~,2 with which the amplitude of the cycle arises. 

In Fig. 3 we show ~o( j )  for parameters indicated in the legend. Below 
the critical point, ~1 < A2, the distribution is sharply peaked about the 
origin. Far beyond the critical point the distribution has a maximum cor- 
responding to the location of the macroscopic cycle. From the R, 6 geometry 
it is seen that the steady-state distribution corresponds to a crater-like 
configuration. At the critical point the distribution is broad and centered 
about the origin. 

5. R E M A R K S  

It is interesting to conjecture that our statistical model of fluctuations 
in limit cycle systems developed in Sections 2 and 3 contains all the interesting 
behavior for these systems at least in the vicinity of the critical point. To 
argue in this direction we have to address several key questions. First the 
scaling arguments used to derive the T D G L  equation were based on a 
phenomenological reaction-diffusion equation. This scaling approach is 
known m,12~ to be strictly valid only in the mean field approximation. On the 
other hand, GL-type models have been used in the equilibrium theory of 
critical phenomena as Hamiltonians to generate probability functionals for 
determining static critical phenomena and in T D G L  equations to study 
critical dynamic phenomena. One could argue that the well-known universality 
that exists for critical phenomena (18'19~ suggests that the details of the system 
do not determine the critical exponents. Thus it seems reasonable that one 
could argue that mean field type scaling can be used to generate an equation 
of motion for the critical point. Noise added to that T D G L  equation will 
cause the scaling of fluctuations to change close to the critical point. 

A second point to be addressed is the fact that the master equation 
presented in Section 3 is based on the R, 0 variables and not derived from a 
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birth and death master equation for chemical species particle numbersJ 20~ 
It would be interesting to attempt such a derivation, although this is beyond 
the scope of the present study. 

Our master equation has not been constructed to consider spatial 
variations. In future developments we shall consider the extension of our 
master equation in direct analogy to the cell master equations considered by 
other authors to generalize the master equation to include diffusion (21~ and 
furthermore to study questions of nucleation and fluctuations around a 
stable cycle via the nonlinear mean field master equation, c22~ The properties 
of phase correlation have already been studied using a perturbed oscillator 
theory and a phenomenological Langevin equation. (23~ It was found, for 
example, that a phase correlation length exists over which an oscillatory 
system could maintain phase coherence. 

Perhaps the most interesting (and probably the most difficult) theoretical 
question in the subject is whether one can derive simple statistical criteria to 
distinguish among the following phenomena: 

1. Critical fluctuations near a Hopf  bifurcation to a limit cycle. 
2. Fluctuations about a stable cycle. 
3. Giant fluctuations in homoclinic systems37~ 
4. Spatiotemporal chaotic (strange attractor) behavior. (24,25~,2 

It would be interesting, and useful in analyzing system kinetics, to see if, 
for example, the space-time composition autocorrelation functions for these 
systems were qualitatively different. Such quantities could possibly be 
determined from light scattering experiments ~26~ or more directly by using 
more macroscopic multichannel autocorrelation techniques. 

A simple three-variable "po la ra to r"  model yielding exactly soluble, 
multiply periodic spatiotemporal reaction-diffusion solutions has been 
studied. (2~ The model is essentially a three-dimensional extension of the R, 
0 model studied here and can be used to construct a master equation like 
that in Section 3 to study fluctuations in multiply periodic systems. It appears 
that this system should even be interesting in the context of strange attractors 
since it has been shown that an infinitesimal change in the equations of a 
system leading to multiply periodic behavior yields a strange attractor. 
Thus it is hoped that the present calculation plus its extension to the polarator 
should be useful in the study of fluctuations in oscillatory and chaotic systems. 

2 There is some work on statistical properties of Lorenz equations. 
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